@yangkyeongmo@/mcp-server-apache-airflow

Developer Tools

A Model Context Protocol (MCP) server implementation for Apache Airflow, enabling seamless integration with MCP clients.

Python codebaseLocal Service

Installation

Claude Desktop

Installation Command

Configuration

Add to your `claude_desktop_config.json`:

```
{
  "mcpServers": {
    "mcp-server-apache-airflow": {
      "command": "uvx",
      "args": ["mcp-server-apache-airflow"],
      "env": {
        "AIRFLOW_HOST": "https://your-airflow-host",
        "AIRFLOW_USERNAME": "your-username",
        "AIRFLOW_PASSWORD": "your-password"
      }
    }
  }
}
```

Alternative configuration using `uv`:

```
{
  "mcpServers": {
    "mcp-server-apache-airflow": {
      "command": "uv",
      "args": [\
        "--directory",\
        "/path/to/mcp-server-apache-airflow",\
        "run",\
        "mcp-server-apache-airflow"\
      ],
      "env": {
        "AIRFLOW_HOST": "https://your-airflow-host",
        "AIRFLOW_USERNAME": "your-username",
        "AIRFLOW_PASSWORD": "your-password"
      }
    }
  }
}
```

Replace `/path/to/mcp-server-apache-airflow` with the actual path where you've cloned the repository.

Instructions

To install Apache Airflow MCP Server for Claude Desktop automatically via [Smithery](https://smithery.ai/server/@yangkyeongmo/mcp-server-apache-airflow): ``` npx -y @smithery/cli install @yangkyeongmo/mcp-server-apache-airflow --client claude ```

README

mcp-server-apache-airflow

A Model Context Protocol (MCP) server implementation for Apache Airflow, enabling seamless integration with MCP clients. This project provides a standardized way to interact with Apache Airflow through the Model Context Protocol.

About

This project implements a Model Context Protocol server that wraps Apache Airflow's REST API, allowing MCP clients to interact with Airflow in a standardized way. It uses the official Apache Airflow client library to ensure compatibility and maintainability.

Feature Implementation Status

| Feature | API Path | Status | | --- | --- | --- | | DAG Management | | | | List DAGs | /api/v1/dags | ✅ | | Get DAG Details | /api/v1/dags/{dag_id} | ✅ | | Pause DAG | /api/v1/dags/{dag_id} | ✅ | | Unpause DAG | /api/v1/dags/{dag_id} | ✅ | | Update DAG | /api/v1/dags/{dag_id} | ✅ | | Delete DAG | /api/v1/dags/{dag_id} | ✅ | | Get DAG Source | /api/v1/dagSources/{file_token} | ✅ | | Patch Multiple DAGs | /api/v1/dags | ✅ | | Reparse DAG File | /api/v1/dagSources/{file_token}/reparse | ✅ | | DAG Runs | | | | List DAG Runs | /api/v1/dags/{dag_id}/dagRuns | ✅ | | Create DAG Run | /api/v1/dags/{dag_id}/dagRuns | ✅ | | Get DAG Run Details | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id} | ✅ | | Update DAG Run | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id} | ✅ | | Delete DAG Run | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id} | ✅ | | Get DAG Runs Batch | /api/v1/dags/~/dagRuns/list | ✅ | | Clear DAG Run | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/clear | ✅ | | Set DAG Run Note | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/setNote | ✅ | | Get Upstream Dataset Events | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/upstreamDatasetEvents | ✅ | | Tasks | | | | List DAG Tasks | /api/v1/dags/{dag_id}/tasks | ✅ | | Get Task Details | /api/v1/dags/{dag_id}/tasks/{task_id} | ✅ | | Get Task Instance | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id} | ✅ | | List Task Instances | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances | ✅ | | Update Task Instance | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id} | ✅ | | Clear Task Instances | /api/v1/dags/{dag_id}/clearTaskInstances | ✅ | | Set Task Instances State | /api/v1/dags/{dag_id}/updateTaskInstancesState | ✅ | | Variables | | | | List Variables | /api/v1/variables | ✅ | | Create Variable | /api/v1/variables | ✅ | | Get Variable | /api/v1/variables/{variable_key} | ✅ | | Update Variable | /api/v1/variables/{variable_key} | ✅ | | Delete Variable | /api/v1/variables/{variable_key} | ✅ | | Connections | | | | List Connections | /api/v1/connections | ✅ | | Create Connection | /api/v1/connections | ✅ | | Get Connection | /api/v1/connections/{connection_id} | ✅ | | Update Connection | /api/v1/connections/{connection_id} | ✅ | | Delete Connection | /api/v1/connections/{connection_id} | ✅ | | Test Connection | /api/v1/connections/test | ✅ | | Pools | | | | List Pools | /api/v1/pools | ✅ | | Create Pool | /api/v1/pools | ✅ | | Get Pool | /api/v1/pools/{pool_name} | ✅ | | Update Pool | /api/v1/pools/{pool_name} | ✅ | | Delete Pool | /api/v1/pools/{pool_name} | ✅ | | XComs | | | | List XComs | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id}/xcomEntries | ✅ | | Get XCom Entry | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id}/xcomEntries/{xcom_key} | ✅ | | Datasets | | | | List Datasets | /api/v1/datasets | ✅ | | Get Dataset | /api/v1/datasets/{uri} | ✅ | | Get Dataset Events | /api/v1/datasetEvents | ✅ | | Create Dataset Event | /api/v1/datasetEvents | ✅ | | Get DAG Dataset Queued Event | /api/v1/dags/{dag_id}/dagRuns/queued/datasetEvents/{uri} | ✅ | | Get DAG Dataset Queued Events | /api/v1/dags/{dag_id}/dagRuns/queued/datasetEvents | ✅ | | Delete DAG Dataset Queued Event | /api/v1/dags/{dag_id}/dagRuns/queued/datasetEvents/{uri} | ✅ | | Delete DAG Dataset Queued Events | /api/v1/dags/{dag_id}/dagRuns/queued/datasetEvents | ✅ | | Get Dataset Queued Events | /api/v1/datasets/{uri}/dagRuns/queued/datasetEvents | ✅ | | Delete Dataset Queued Events | /api/v1/datasets/{uri}/dagRuns/queued/datasetEvents | ✅ | | Monitoring | | | | Get Health | /api/v1/health | ✅ | | DAG Stats | | | | Get DAG Stats | /api/v1/dags/statistics | ✅ | | Config | | | | Get Config | /api/v1/config | ✅ | | Plugins | | | | Get Plugins | /api/v1/plugins | ✅ | | Providers | | | | List Providers | /api/v1/providers | ✅ | | Event Logs | | | | List Event Logs | /api/v1/eventLogs | ✅ | | Get Event Log | /api/v1/eventLogs/{event_log_id} | ✅ | | System | | | | Get Import Errors | /api/v1/importErrors | ✅ | | Get Import Error Details | /api/v1/importErrors/{import_error_id} | ✅ | | Get Health Status | /api/v1/health | ✅ | | Get Version | /api/v1/version | ✅ |

Setup

Dependencies

This project depends on the official Apache Airflow client library ( apache-airflow-client). It will be automatically installed when you install this package.

Environment Variables

Set the following environment variables:

AIRFLOW_HOST=<your-airflow-host>
AIRFLOW_USERNAME=<your-airflow-username>
AIRFLOW_PASSWORD=<your-airflow-password>

Usage with Claude Desktop

Add to your claude_desktop_config.json:

{
  "mcpServers": {
    "mcp-server-apache-airflow": {
      "command": "uvx",
      "args": ["mcp-server-apache-airflow"],
      "env": {
        "AIRFLOW_HOST": "https://your-airflow-host",
        "AIRFLOW_USERNAME": "your-username",
        "AIRFLOW_PASSWORD": "your-password"
      }
    }
  }
}

Alternative configuration using uv:

{
  "mcpServers": {
    "mcp-server-apache-airflow": {
      "command": "uv",
      "args": [\
        "--directory",\
        "/path/to/mcp-server-apache-airflow",\
        "run",\
        "mcp-server-apache-airflow"\
      ],
      "env": {
        "AIRFLOW_HOST": "https://your-airflow-host",
        "AIRFLOW_USERNAME": "your-username",
        "AIRFLOW_PASSWORD": "your-password"
      }
    }
  }
}

Replace /path/to/mcp-server-apache-airflow with the actual path where you've cloned the repository.

Selecting the API groups

You can select the API groups you want to use by setting the --apis flag.

uv run mcp-server-apache-airflow --apis "dag,dagrun"

The default is to use all APIs.

Allowed values are:

  • config
  • connections
  • dag
  • dagrun
  • dagstats
  • dataset
  • eventlog
  • importerror
  • monitoring
  • plugin
  • pool
  • provider
  • taskinstance
  • variable
  • xcom

Manual Execution

You can also run the server manually:

make run

make run accepts following options:

Options:

  • --port: Port to listen on for SSE (default: 8000)
  • --transport: Transport type (stdio/sse, default: stdio)

Or, you could run the sse server directly, which accepts same parameters:

make run-sse

Installing via Smithery

To install Apache Airflow MCP Server for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @yangkyeongmo/mcp-server-apache-airflow --client claude

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

MIT License